Left Termination of the query pattern
times_in_3(g, g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
times(X, Y, Z) :- mult(X, Y, 0, Z).
mult(0, Y, 0, 0).
mult(s(U), Y, 0, Z) :- mult(U, Y, Y, Z).
mult(X, Y, s(W), s(Z)) :- mult(X, Y, W, Z).
Queries:
times(g,g,a).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
times_in: (b,b,f)
mult_in: (b,b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3) = times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4) = U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3)
0 = 0
mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4)
s(x1) = s(x1)
U2_ggga(x1, x2, x3, x4) = U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5)
times_out_gga(x1, x2, x3) = times_out_gga(x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3) = times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4) = U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3)
0 = 0
mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4)
s(x1) = s(x1)
U2_ggga(x1, x2, x3, x4) = U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5)
times_out_gga(x1, x2, x3) = times_out_gga(x3)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
The TRS R consists of the following rules:
times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3) = times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4) = U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3)
0 = 0
mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4)
s(x1) = s(x1)
U2_ggga(x1, x2, x3, x4) = U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5)
times_out_gga(x1, x2, x3) = times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2)
U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5)
MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3)
U1_GGA(x1, x2, x3, x4) = U1_GGA(x4)
U2_GGGA(x1, x2, x3, x4) = U2_GGGA(x4)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
The TRS R consists of the following rules:
times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3) = times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4) = U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3)
0 = 0
mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4)
s(x1) = s(x1)
U2_ggga(x1, x2, x3, x4) = U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5)
times_out_gga(x1, x2, x3) = times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2)
U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5)
MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3)
U1_GGA(x1, x2, x3, x4) = U1_GGA(x4)
U2_GGGA(x1, x2, x3, x4) = U2_GGGA(x4)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 4 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
The TRS R consists of the following rules:
times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3) = times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4) = U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3)
0 = 0
mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4)
s(x1) = s(x1)
U2_ggga(x1, x2, x3, x4) = U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5)
times_out_gga(x1, x2, x3) = times_out_gga(x3)
MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
0 = 0
s(x1) = s(x1)
MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
MULT_IN_GGGA(s(U), Y, 0) → MULT_IN_GGGA(U, Y, Y)
MULT_IN_GGGA(X, Y, s(W)) → MULT_IN_GGGA(X, Y, W)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MULT_IN_GGGA(X, Y, s(W)) → MULT_IN_GGGA(X, Y, W)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- MULT_IN_GGGA(s(U), Y, 0) → MULT_IN_GGGA(U, Y, Y)
The graph contains the following edges 1 > 1, 2 >= 2, 2 >= 3